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Abstract--The electrophoretic motion of two freely-suspended, non-conducting arbitrary coaxial prolate 
particles of revolution with thin electrical double layers is investigated using the method of internal 
distribution of singularities. Corrections to the Smoluchowski equation due to particle interactions are 
determined. The electrophoretic mobilities of two prolate spheroid particles are calculated for different 
distances of two particles, various ratios of zeta potentials and a variety of parameters of particle shape. 
It is also found that the electrophoretic particles in our problem do not interact with one another when 
they have equal surface zeta potentials. 
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1. I N T R O D U C T I O N  

A charged particle suspended in an electrolyte solution is covered by an electrical double layer of 
diffuse ions having a total charge, equal and opposite in sign, to that of the particle. The charged 
particle moves through the liquid when an electric field is exerted on the particle. This motion is 
termed electrophoresis, which is an interesting subject in chemical and biomedical engineering and 
has been applied to particle characterization or separation in a variety of colloidal and biological 
systems. Determination of electrophoretic velocity is one of the main topics in electrophoresis. For 
a single charged particle suspended in an unbounded electrolyte fluid of viscosity r/and dielectric 
constant E, the electrophoretic velocity U0 is evaluated by the well-known Smoluchowski equation: 

U0 = 4~n E~ 

where ~ is the zeta potential of the particle surface and E~ is the applied constant electrical field. 
The ratio Uo/E~ is known as the electrophoretic mobility of the particle. The Smoluchowski 
equation holds for non-conducting particles of any shape, providing the local radii of curvature 
of the particle are much larger than the thickness of the electrical double layer covering the 
particles. 

Colloidal particles encountered in practice are often not isolated and will migrate in the presence 
of neighbouring particles or boundaries, so it is necessary to determine how they affect the 
movement of particles and therefore modify the Smoluchowski equation. Using spherical bipolar 
co-ordinates, Reed & Morrison (1976) studied the electrophoresis of two arbitrarily oriented 
spheres with equal radii. Their results were presented for various distances apart as well as for 
several values of zeta potential ratio and it is shown that no interaction exists for the case of two 
spheres with identical zeta potentials. Utilizing these data for two equal-sized spheres, Anderson 
(1981) considered the concentration effect on electrophoretic mobility in a bounded, dilute 
dispersion; the dependence is rather weaker than that of gravity settling. The aforementioned work 
was extended by Chen& Keh (1988) and Keh &Chen (1989a,b) to the electrophoretic motion of 
two arbitrarily oriented spheres with arbitrary ratios of radii and zeta potentials by the method 
of reflection using the spherical bipolar co-ordinates. The axisymmetric electrophoretic motion of 
multipole spheres along their line of centre was calculated by Keh & Yang (1990) by making use 
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of the multipole method and the boundary collocation technique, provided there was no restriction 
on zeta potential, sphere radii or distance apart. 

All previous solutions for corrected electrophoretic velocity are available only for spheres. In 
this paper we will study the axisymmetric electrophoretic motion of two freely suspended and 
non-conducting arbitrary coaxial prolate bodies of revolution along their common axis of 
revolution. The two particles can differ both in size and in shape. The method of internal 
distribution of singularities developed by Wu (1984) is adopted to solve the electrostatic and the 
hydrodynamic equations. The modified Smoluchowski equation for the prolate spheroid is 
obtained with satisfactory convergence for different particle shapes, zeta potentials and distances 
apart. 

The mathematical description of the problem will be presented in section 2, while in section 3 
the method of internal distribution of singularities will be considered. Finally in section 4 the 
convergence and accuracy of the method will be examined and the covergent numerical results of 
the electrophoretic mobilities for different parameters are given in detail. 

2. M A T H E M A T I C A L  DESCRIPTION 

Consider the axisymmetric electrophoretic motion of two non-conducting and freely suspended 
arbitrary coaxial prolate particles of revolution. Cylindrical and spherical co-ordinates (R, 0, z) and 
(r, 0, ~b) are introduced with the origin at O1 (figure 1). z0 is the distance between the centres of the 
two particles. A uniform electric field E~ez is imposed on the particles along their common axis 
of revolution. Assume that the thickness of the double layer is much smaller than the characteristic 
curvature radius of the particle and the fluid outside the thin double layer is electrically neutral 
with constant conductivity. The co-ordinates can be non-dimensionalized by taking L~, the 
characteristic length of particle 1, as the reference length. The electric potential qSe and electric 
stream function Oe, which are related to the local electric field E(x) by the following relationships 
can then be introduced: 

(~b e 1 ~ e  ~q~e [ (~0e 
E(x)=-E~Vq6~,  E.=  ~?z R c3R' ER= ~3R R ~z [1] 

where ER, E. are the dimensionless components of E in the R and z directions. The governing 
equation for the electric stream function ~e(x) is given by the following equations and boundary 
conditions: 

EhPe = 0 [21 

6 e = 0  on S, [3a] 

E 

b I b 2 

Figure 1. Configuration of two arbitrary axisymmetric prolate particles in electrophoretic motion. 
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~ e = 0  onS2 [3b] 
R z 

~k.~ 2 as r ~  [3c] 

where S~, $2 refer to the surfaces of the two particles. The Stokes operator E 2 in the cylindrical 
co-ordinates has the form 

E 2 = R ~  ~ - ~  +0z-- 5 [4] 

Once the electric field is determined, we turn to consider the fluid field. Since the Reynolds 
number of the fluid flow is small, the stream function ~,' of the axisymmetric steady Stokes flow 
is governed by 

E2(E2qj ')  = 0 [5] 

The stream function ¢ '  is related to the velocity components by 

1 0q,' 1 0~' 
V~- R OR , VR= R Oz [6] 

The electric field acts on the double layer of the ions at the particle surfaces and induces 
electro-osmotic tangential velocities Us on the surfaces of the particles which are related to the local 
electric field Es = -E~Vq~ by the Helmholtz equation for electro-osmotic flow: 

E~ 
Us = - - -  E~ 

4nr/ 
On account of this fact, the boundary conditions for the fluid field are 

V' = U~ e. + ~ Vq~, on SI [7a] 

, £~2 E~e 
V" = Uzez + ~ V~b~ on S2 [7b] 

V ' = 0  as r ~  [7c] 

where U~, U~ are the instantaneous electrophoretic velocities of the two particles to be determined, 
(i,  (2 are the zeta potentials of the particle surfaces St and $2, respectively. Note that the local 
electric field Vtp~ will be calculated from the electrostatic equation [2], boundary conditions [3a-c] 
and the relationships [1]. 

Non-dimensionalizing [5] and 
characteristic velocity, we have 

boundary conditions [7a-c] by taking E(lE~/4rcq as the 

E~(E~q,) = o [8] 

V--Ule:+Vq~e on Si [9a] 

V = U2e: + CV~b~ on $2 [9b] 

V = 0  as r ~ o o  [9c] 

where the physical quantities without prime refer to the non-dimensional quantity and 

~ m  

u~ 
U I ~ - -  

E~IE~ 
4~q 

u~ 
u 2 =  

E~IE~ 
4~zq 

=2j 

[lO] 

U]] 

¢2 = 22 ~ [12] 
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u¢ ui 
21 -- 2 2 = 

e~,E~ ' (~2E~ 

4~1  47z~1 

as the non-dimensional  electrophoret ic  mobili t ies o f  particles 1 and 2, respectively. 
In order  to determine the electrophoret ic  velocities U~ and U2 of  the particles, it is convenient  

to decompose  the bounda ry  condit ion [9a,b] and the total  flow into four  parts  using the linearity 
of  the governing equat ion  and the bounda ry  conditions.  Let 

V = UIV 1 -}- U2V 2 -~ V 3 -}- ~V4, 

here  4,1,4,2, 4,3, 4,4 a n d  VI ,  V2, V3, V4, satisfy 

E2(E24,i)  = 0 

4, = u,  4,, + u24,2 + 4,3 + ¢g,, [131 

where 

Once these four  bounda ry  value p rob lems  are solved, the electrophoret ic  velocities as well as the 
mobili t ies are readily obtained,  since the net forces exerted by the fluid on the freely suspended 
particles must  disappear.  Writ ing the zero drag requirement  for the two particles we have 

Ul Fll  q- U2FI2 -k Fl3 -F ~.Ft4 = 0 [16] 
UIF21%- g2F22 -t-" F23 -]- ~F24 = 0 

where the F .  and Fzi (i = 1, 2, 3, 4) are the net forces acting on the particle surfaces S~ and Sz 
obta ined f rom the four  boundary  value problems.  Equat ion [16] is a system of  linear algebraic 
equat ions to determine the dimensionless electrophoret ic  velocities Ul and U2, which can be 
expressed as: 

U, = e I q-[] ~, U 2 = e 2 + . ~  [17] 

e, = A,,/A, f~ = A,z/A, e 2 = A 2 , / A .  f2 = A22/A,  

Al l  = FI2F23 - FL3~2 Al2 = FI2F24 -- FI4F2z 

A2, = F,3F2, - F,a F23 A22 = FI4F21 - -  FII F24 A = FII F22 - -  F,2F2, [181 

In the case of  ~ = 1, we can prove  that  the dimensionless velocities and the non-dimensional  
e lectrophoret ic  mobilit ies o f  the two particles are identical and equal to unity, i.e. 

U t = U 2 = 2 1 = 2 2 = l  

Therefore ,  both  particles move  as if they were isolated and the Smoluchowski  equat ion holds 
exactly for these particles. 

In fact, it is easy to verify that  when { = l, V = e: - E/E~,o and U~ = Uz = 1 are the solutions of  
[8] with the bounda ry  condit ions [9a-c]. Such flow causes no drag force to the particles because 
it is a potent ial  flow. 

Considering that  U~ = U2 = 1 while ¢ = 1, we have f rom [17] 

e l + f l = l ,  e 2 + f : = l  

and 

Ul=el+(1 - e l ) ~ ,  U 2 = e 2 + ( 1  - e 2 ) ~  [19] 

i = 1 , 2 , 3 , 4  [14] 

V l = e = ,  V2=O,  V3=VqS~, V 4 = O  on St [15a] 

V l = O ,  Vz=e~ ,  V 3 = O ,  V z = V q ~  on $2 [15b] 

V~=O as r---*zc i = 1 , 2 , 3 , 4  [15c] 
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The non-dimensional mobilities 21 and ~,2 of the two particles can be calculated by means of [1 1] 
and [12] 

e 2  
2, =e ,  + ( 1 - e , ) ~ ,  2 2 = ~ + ( 1 - e 2 )  [20] 

Thus our main problem is to find Fig and Fzg (i = 1, 2, 3, 4), which will be accomplished in the 
following section. 

3. METHOD OF I N T E R N A L  DISTRIBUTION OF S I N G U L A R I T I E S  
IN ELECTROPHORESIS  

In this section, the method of internal distribution of singularities developed by Wu (1984) 
is employed to solve the electrostatic equation and hydrodynamic equation describing the 
electrophoresis of two arbitrary coaxial prolate particles of revolution. 

3.1. Electrical field 

Since the electric field and the inviscid potential axisymmetric flow past an axisymmetric body 
have the same governing equation and boundary conditions, the method of internal distribution 
of singularities presented in Chen & Wu (1988) is utilized. The fundamental singularity to electric 
field at z = ~r and R = 0 can be written as: 

Q'(R.  z, 7) = ~ B .SE . (R ,  z, 7) [21] 
r / = 2  

where 

and 

Q '(R, z, 7) = (~be, E:, ER) 

SE. (R ,  z. 7) = (F~3)(R, z - ~), F<."(R, z - 7), F~5)(R, z -- 7)) 

[22] 

[23] 

F~')(R, z)  = r-I"+')P.(~), F?'(R, z)  = r I"-')C~'/2(~). 

F?)(R, z)  = (n + 1)r -"C~1+/2(() [24] 

Z 
r = (R 2 + z2) 1/2 and ~ = cos 0 = -  [25] 

r 

here P. is the Legendre polynomial of order n, C~-~/z is the Gegenbauer function of the first kind 
of order n and degree - 1/2. 

Following the approach presented in Wu (1984), a segment of straight line A~Bg(-ci,  ci) (i = 1, 2) 
inside each particle is chosen, where 2c~ is the length of the line segment. If the nose and tail of 
the particle are rounded, their centres of curvature could be prescribed as A and B. Distributing 
the singularity [21] continuously over AB, plus the undisturbed uniform electric field, we obtain: 

Q (R, z) = ( - R  2/2, 1, O) + B~')(7)SE. (R, z, ¢) de + B(. 2) (7)SE. (R, z - Zo, 7) d7 
r t = 2  --c  I -- "2 

[26] 

where B(,~)(7) and B(,2)(~) are the unspecified density functions of the singularities along AB which 
are to be determined by satisfying boundary conditions on the surfaces of the particles. 

Obviously [26] satisfies the governing equation [2] and the boundary condition at infinity [3c]. 
All that remains is to satisfy the conditions [3a] and [3b] on the surfaces of the particles. This will 
eventually lead to a set of integral equations to be solved for the unknown density functions BI, 1)(7) 
and  B(n2) (7). 

Since the complexity of the kernel functions in the integral equation precludes an analytical 
solution, the integral equations will be solved approximately. 

To this end, following the approach proposed by Chen & Wu (1988), the segment AgBg is 
partitioned into M subintervals (djj, dj3). With the end points djl, dj3 and midpoint dj2 of each 

[JMF 2U4~K 
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subinterval to be chosen as interpolating points, the density functions are approximated by 
piecewise polynomials of second order interpolating the density function at these nodal points. 
Truncating the infinite series at the Nth term, [26] becomes 

“Z N+I 

B”‘(&SE 
dh 

Q(Rz)=(-R2/2, l,O)+ 1 c “I (R, z z) dt + n 3 s B;;'(&T??,,(R,z -z,,<) dt 
,=I n=2 d/2 1 

~271 

where 

Here Bn,k (k = 1,2, 3) are the corresponding values of the density function at the three interpolating 
points. Substituting [28] into [27], after some algebraic manipulation we have 

m N+I 3 

/=ln=? k=l 

where 

WE,,,,,, = (Gl;:k, Cl!,:, G);::.) 

G$ = 1 q,kG$(R, Z) i = 1, 3, 5 
I= I 

(z -dj,)(z -dj,)(z -dj,)(-1)” ‘HA 
qlk = 

z - dj, H, H2 H3 

q2k = {(z - djk) - [(z - dj,) + (z - dj,) f (z - dj,)]} (~‘~~~ k = 1,2,3 
I 

1291 

[301 

[311 

(-1)” -'Hk 
q3k = H,H,H, 

H,=dj,-dj,, Hz=dj3-dj,, H3=clj2-dj, 

s 

d/3 

G:,,(r, z) = (z -z)‘-‘Fi~‘(R,z -T)dz i = 1, 3, 5 
*/I 

[331 

[341 

G$ can be evaluated by a recurrence formula as shown in Chen & Wu (1988). 
Applying the collocation technique, boundary conditions [3a] and [3b] are exactly satisfied at 

N(2M + 1) points on each surface of the two particles. Equation [29] is then reduced to a system 
of 2N(2M + 1) linear algebraic equations to determine the unknown coefficient Bi,i’, B$', which 
can be solved by a standard matrix inversion method. The accuracy of the solution can be improved 
in principle to any degree by increasing the values of N and M. Therefore the electric field 
distribution is finally determined, which provides the necessary data for further consideration of 
the fluid velocity distribution. 

3.2. Fluid velocity jield 

Once the electric field was obtained, we now proceed to consider the hydrodynamic field. A 
procedure similar to that in section 3.1 for the electric field is adopted. First, the expressions for 
a singularity of Stokes flow [5] located at R = 0, z = 2 can be written as follows (Wu 1984): 

U(R z, 2) = f C,X,(R, z, ?) + D,, T,(R, z, 2) [351 
n=? 

where 

U(R z, 4) = ($3 fi,, uR) [361 

S,(R,z,t)= (Fa'(R,z -f), F:'(R,z -& F;;'(R,,? -z)) t371 
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T a b l e  1. C o m p a r i s o n  o f  the  p resen t  resul ts  wi th  exac t  so lu t ions  
(~ = 10) 

Zo = 10 Zo = 5 z o = 3.3 z 0 = 2.5 

2~ Presen t  1.00906 1,07603 1.29595 1.97699 
E x a c t  1.00906 1.07603 1.29596 1.97696 

22 Presen t  0 .99909 0 .99240  0 .97040  0 .90230  
E x a c t  0 .99909 0 .99240  0 .97040  0 .90230  

and 

T. (R, z, 7) = (F(. 4) (R, z - ~), F(. z) (R, z - ~), F(. 6) (R, z - 7)) [38] 

F(.Z)(R, z )  = r -<"- l)(p.(~) + 2C~-,/2(0) 

F(.4)(R, z) = r - ( ' -  3)C;'/2(~) 

1)r_l._2 ) 1 C_l,, 2 t7~ z r ? ) ( R , z ) = ( n +  . ~ . + , ~ w - 2 ~  r-(" ~)C~-'/z(~) 

[39a] 

[39b] 

[39c] 

The singularities are distributed continuously along AB, which is then divided into M subintervals 
with the density function approximated by piecewise quadratic polynomials. Truncating the infinite 
series at the Nth terms, [35] can be written as 

M N + I  3 

U ( R , z ) =  E Z E [C(n',~(J-l)+kWnjk(R,z)+ D(.'.~(J o+k 
j = l  n = 2 k = l  

x W W . j k ( R ,  z )  + (2~ ~z) Cn,2(j- l)+k Wnjk(R, z - Zo) 4- On,2( j_ 1)+k 

where 

x W W . j k ( R ,  z - z0)] [40] 

W,,j, =rrz(3)~'~ .jk, "-' .jk ,c:'(I) '~ ,jk J~(s)~ [41a] 

- -  (4) g'7 (6) W W . j ,  -- (G . j , ,  ~" ~jk,~(2) "~.jkJ [4lb] 

the definition of G~.~k was given in [31]-[34]. 
As mentioned previously in section 2, the hydrodynamic problem shoud be decomposed into four 

boundary value problems in order to calculate the electrophoretic mobility of the two particles. 
The boundary conditions on the surfaces of the particles for the third and fourth boundary value 
problem are now fully determined using the electric field [1]. By means of the collocation technique, 

3 .5  b 
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k 
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0.5 

0.0 

-0.5 

-1.0 -- 

-1 .5  I I I 
2.0 2.5 3.0 3.5 

o { = - 4 . 0  

ZX ~ = - 1 . 0  

o ~=o.5 
• ~ = 1 . 0  

• ~ = 4 . 0  

. . . .  ~ = 6 . 0  

I I I I I I 
4.0 4.5 5.0 5.5 6.0 6.5 

ZO 

F i g u r e  2. N o n - d i m e n s i o n a l  e l e c t ropho re t i c  mob i l i t y  2~ o f  
par t ic le  1 vs z0 for  v a r i o u s  ~ wi th  a 2 = l,  b I = b 2 = l / I . 5 .  

1.6  m 

i 

1.4 - 

1.2 

1.0 

0.8 

0 . 6  

0 . 4 ' - -  

0.2 - 

0,0 
2.0 

o ~ = -4 .0  
A ~ = - I . 0  

o ~ = 0 . 5  
• ~ = 1 , 0  

• ~ = 4 . 0  
. . . .  ~ = 6 . 0  

I I I I I I I I I 
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 

Z0 

Figu re  3. N o n - d i m e n s i o n a l  e l ec t rophore t i c  mob i l i t y  2., o f  
par t ic le  2 vs z o for  va r i ous  ~ wi th  a2 = 1, b~ = b 2 = 1/1.5. 
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the boundary conditions [15a] and [15b] are applied at N ( 2 M  + 1) discrete points at each surface 
of the two particles, which leads to a set of linear algebraic equations for the unknown coefficients 
C<9 D o) C<2) Dq) _ , j ,  and The fluid field is completely solved once these coefficients are evaluated. vn]  , vnJ --nj  • 
The drag forces F, and 1:2 exerted by the fluid on particles 1 and 2 can be determined from Happel 
& Brenner (1983) 

Fi = qnr 3 sin s 0 ~r \ r  3 sin s 0 r dO i = 1, 2 [42] 

Substituting the expression for ~b into [42] and considering the orthogonality properties of Legendre 
and Gegenbauer functions, we have 

2n M 
Fi = - 3  E tr~¢i) + An t i )  -L D(i) ~,~2.2(j I)+I w a " Z , 2 ( j - I ) + Z T  2 , 2 ( ) - 1 ) + 3 ) ( d j 3 - - d j l )  i =  1,2 [43] 

j = l  

4. RESULTS AND DISCUSSION 

Consider, as an example, the axisymmetric electrophoretic motion of two freely suspended and 
non-conducting coaxial prolate spheroids, with their common axis parallel to the direction of an 
applied electric field. 

Suppose the equations of the two prolate spheroids are 

z 2 R 2 
a-~ + b-~ = 1 [44] 

and 

( z  - z 0 ) 2  R 2  
a~---2 + b--~ = 1 [45] 

where a~, a2 and b~, b 2 a re  the major and minor axes, respectively, z 0 is the distance between the 
two particle centres. The origin of the co-ordinates is chosen at the centre of particle 1. Without 
loss of generality, we take a~ = 1. In other words, a~ is selected as a reference length. The foci of 
the spheroids are chosen as points A and B. 

The segment AB is partitioned into M subintervals with equal length and the specification of 
collocation points along the surface of  the spheroids follows the equal spacing principle. To avoid 
singularity of the coefficient matrix at the points 0 = 0, n/2, n, four closely spaced adjacent points 
0 = 6, 1/2n +__ 6, n - 6 are taken instead of the above-mentioned points, & is taken as 0.01 ° in our 
numerical computation. 

o % = -4.0 
1.3[- <>~=_l.0 • 

/ D~ =0.5 / 

" | ~ ;410 • /  

1 . 1 ~  

V 0.8 I 
0.4 0.5 0.6 0.7 0.8 0.9 

b I 

Figure 4. Non-dimensional  electrophoretic mobility 2~ of  
particle I vs b~ for various ¢ with z 0 = 3, a2 = 1, b I = b 2. 
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Figure 5. Non-dimensional  electrophoretic mobility )., of  
particle 2 vs b 2 for various ~ with z 0 = 3, a 2 = 1, b~ = h,. 
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Figure 6. N o n - d i m e n s i o n a l  e lec trophoret ic  mobi l i ty  2, o f  
particle 1 vs ¢ for var ious  b I with  z 0 = 3, a 2 = 1, b] = b 2. 

D 
Ob I = 0 . 4  

0 b  I = 0 . 6  

1.1 L E ] b I ^  = i .8 -- 

,-4 
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Figure 7. N o n - d i m e n s i o n a l  e lectrophoret ic  mobi l i ty  ,1. 2 o f  
particle 2 vs ~ for var ious  b~ with z 0 = 3, a2 = 1, bt = b 2. 

We shall first test the convergence  and accuracy o f  the method.  All o f  the results obtained 
converge  to at least four significant digits. As  a test o f  the convergence  characteristic o f  the method,  
a specific case o f  two  spheres with equal  radii, i.e. a t = a2 = bl = b2 = 1, is calculated, the so lut ions  
are compared  in table 1 with the exact so lut ions  given by Reed & Morr i son  (1976). Our results 
o f  the mobi l i ty  agree with exact results to five digits even for the difficult case o f  ~ = 10 and z0 = 2.5. 
The accuracy test indicates that reliable results with high accuracy can be achieved using the 
proposed  method.  

Equat ions  [19] and [20] s h o w  that the main factors affecting the d imensionless  e lectrophoret ic  
velocities and mobil i t ies  are the ratio o f  the zeta potentials  ~ and the distance between the centres 
z0 o f  the two  particles and the parameters  a2, b i ,  b2 o f  the particle shapes.  In this paper, the effects 
o f  these factors on  mobil i t ies  were studied by the above -ment ioned  semi-analytical  and semi- 
numerical  method .  

The effect o f  Zo on 2~ and 22 for various  ~ ( - 4 ,  - 1, 0.5, 1, 4, 6) with a2 = 1 and b, = b2 = 1/1.5 
are given in figures 2 and 3. The results indicate that when  z0 is small,  2, and 22 are obvious ly  
different from 1 and they tend to 1 rapidly as z0 ~ ~ .  This means  that the interaction becomes  
stronger when  the particles become  closer and decreases sharply with the increase o f  z0. The 
numerical  results also suggest that as z0 > 5, the interaction is weak  enough  to be neglected. In this 
case the particles can be treated as isolated and Smoluchowsk i ' s  equat ion  holds  with high accuracy.  
Figure 2 shows  that the presence o f  particle 2 will enhance  the velocity o f  particle 1 as ~ > 1 and 
will weak en  it as ~ < 1. In the meant ime,  figure 3 demonstrates  that particle 2 will migrate faster 
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than an isolated particle in the range of 0 < 4 < ! and will move slower when 4 < 0 or 4 > i. In 
the case of 4 = 1, as was proved in section 2, 2~ = 22 = 1, the two particles move as if they were 
isolated and Smoluchowski's equation holds exactly. 

The curves of 21 and 22 versus b~ for various 4 with a2 = 1, bz = bt and z0 = 3.0 are depicted in 
figures 4 and 5, which indicate that with fixed ~ and z0, the interaction will strengthen with increase 
of b. 

It can be seen from [19] and [20] that the dimensionless velocities U~ = ;~ and U2 = 422 are linear 
functions of (. The non-dimensional electrophoretic mobilities 2j and '~2 versus ~ for various b~ with 
a2 = 1, b2 = b~ and z 0 = 3.0 are plotted in figures 6 and 7. In fact, 2~ and 22 are totally determined 
by the coefficients e~ and e2 which are functions of a~, a2, b~, b2 and z0. Figures 8 and 9 demonstrate 
the effect of b(bl = b 2 - - b )  on et and e 2 with different z0. 

In conclusion, for the case of two freely suspended and non-conducting particles, Smolu- 
chowski's equation needs to be corrected by virtue of the presence of  the neighbouring particle. 
The factors that affect the strength of the interaction are the parameters of the particle shape, the 
ratio ~ of the zeta potentials and the distance z 0 between the two particles. The dimensionless 
electrophoretic velocities UI -- 2~ and U2 = 422 calculated by [19] and [20] are linear functions of 
4. When the distance between two particles is more than five times larger than the characteristic 
length of the particle, the interacation is weak enough to be neglected. 
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